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Unsteady natural convection in a rectangular cavity 
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The problem of transient natural convection in a cavity of aspect ratio A < 1 with 
differentially heated end walls is considered. Scale analysis is used to show that a 
number of initial flow types are possible, collapsing ultimately onto two basic types 
of steady flow, determined by the relative value of the non-dimensional parameters 
describing the flow. A number of numerical solutions which encompass both flow 
types are obtained, and their relationship to the scale analysis is discussed. 

1. Introduction 
The transport of heat or mass by buoyancy-induced convective motions is a mecha- 

nism which finds relevance in many physical systems; accordingly there have been 
numerous theoretical, experimental and numerical studies of various aspects of 
natural convection flows. In particular, the idealized problem of steady laminar flow 
in an enclosed rectangular cavity with differentially heated end walls has been exten- 
sively studied in various contexts. 

These investigations have, for the most part, been concerned with cavities for 
which the aspect ratio A (height/length) is greater than or equal to unity. The analyti- 
cal progress made by Batchelor (1954) and Gill (1966) belonged to this class, as did 
most of the experimental results (Eckert & Carlson 1961; Elder 1965) and the many 
numerical approaches (e.g. Wilkes & Churchill 1966; de Vahl Davis 1968; Newel1 & 
Schmidt 1970; Quon 1972). Although occasionally included as part of a wider study 
(e.g. Cotton, Ayyaswamy & Clever 19741, the small aspect-ratio case was not treated 
in a detailed way until Cormack, Leal & Imberger (1974), Cormack, Leal & Seinfeld 
(1974) and Imberger (1974) examined the problem from the analytical, numerical 
and experimental points of view respectively. 

The three analytical papers mentioned above (Batchelor 1954; Gill 1966; Cormack, 
Leal & Imberger 1974) each deal with fundamentally different flow and heat transfer 
regimes. In the first case, Batchelor showed that, for small Rayleigh numbers based 
on cavity length (i.e. small horizontal temperature gradients) and large aspect ratios, 
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the mode of heat transfer is primarily by conduction. On the other hand, the case 
treated by Gill (essentially fixed A and large Rayleigh number) resulted in the for- 
mation of thin boundary-layer regions driving the entire flow, with convection 
dominating the heat-transfer process. Finally, Cormack, Leal & Imberger determined 
that, for fixed Rayleigh number and sufficiently small aspect ratio, conduction was 
again the dominant mode of heat transfer, with the flow being driven by the tempera- 
ture gradient across the cavity and the end regions merely turning the flow around. 

This transition in flow regimes may be of importance in environmental flows, for 
which the small aspect-ratio cavity has a particular significance. A long shallow 
cavity with end walls a t  different temperatures may be regarded as an idealized model 
of, for example, the transfer of pollutant in estuaries or the motions set up in the 
epilimnion of lakes or reservoirs by non-uniform radiative heating. In  many such 
environmental applications, the origin of the buoyancy forces is cyclic or time depen- 
dent in some sense, and, in contrast to the large aspect-ratio configuration, the forcing 
time scale may be small in comparison to the flow set-up time. In  these cases, the 
transient behaviour is of interest and the question of the importance of the division 
of flow regimes a t  the transient level naturally arises. 

The unsteady problem has attracted little interest and transient behaviour is 
rarely documented, although steady numerical solutions have been occasionally 
obtained by time stepping from a prescribed initial state. Apart from Wilkes & 
Churchill (1966), who obtained some transient results, and in different contexts (e.g. 
Szekely & Todd 1971) unsteady numerical or experimental results for these flows 
appear to be unavailable. 

In this paper, a simple scale analysis is used to give some insight into the possible 
transient behaviour for the case A < 1.  With the non-dimensional parameters des- 
cribing the flow (the Rayleigh number Ra, the Prandtl number u, and A )  defined in 
the usual way, a number of possible transient flow types appear possible, depending on 
the value of Ra in relation to various combinations of u and A. These regimes may be 
further combined to provide a broad classification of the flows into conductive, 
convective, or transitional, depending on the relative values of Ra, unity, and a 
critical Rayleigh number Ra,, where Ra, = max (a2, A-I2). In  the first case, Ra < 1, 
the transient flow may be described as a slow spin-up of the fluid, with conduction 
always dominating the heat-transfer process. The fluid velocities increase slowly to 
their steady values, as does the total heat transfer across the cavity. In  the convective 
case, Ra > Ra,, vertical boundary layers are formed and maintained, with convection 
the dominant mode of heat transfer. The approach to steady state in this case depends 
on the relative values of Ra and ( T ~ A - ~ ;  if Ra, < Ra < u ~ A - ~ ,  the approach is again 
by a regular spin-up of the fluid, whereas for Ra > C T ~ A - ~ ,  the velocities and total 
heat transfer rise sharply to peak values and approach steady state in a decaying 
oscillatory manner. For 1 < Ra < Ra,, the flow is one of transition between these 
extremes. 

Finally, a number of numerical solutions for the special case A = 1 are obtained 
using a modified version of the finite-difference method proposed by Chorin (1968). 
The parameter values used in these solutions are such that the divisions in flow regimes 
are traversed, and th.e numerical results are discussed in relation to the results of the 
scale analysis. 
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2. Formulation and scale analysis 
Under consideration is a closed rectangular two-dimensional cavity of length I and 

height h with rigid non-slip boundaries containing a Newtonian fluid initially a t  rest 
and a t  temperature To (see figure 1) .  The upper and lower boundaries are insulated. 
At time t = 0, the left- and right-hand end walls are instantaneously heated and cooled 
respectively to temperatures To + AT and To - AT and thereafter maintained a t  these 
temperatures. The subsequent motion is described by the usual equations, which 
incorporate the Boussinesq assumption : 

av av av 
at ax ay PoaY 
-+,.y,-+v- = _ _ _  ' ap+vV2v+ga(T-To), 

a% av -+- = 0, 
ax ay 

aT aT aT 
-+u-+v- = K V T ,  
at ax ay 

(3) 

(4) 

where u and v are the horizontal and vertical components of velocity, T the tempera- 
ture, and p the pressure (including the hydrostatic pressure) a t  any point in the fluid, 
g the acceleration due to  gravity and v ,  pot a and K the kinematic viscosity, density, 
coefficient of thermal expansion and conductivity of the fluid a t  temperature To. 
The appropriate initial and boundary conditions are 

u = v = 0, T = To, a t  all x, y and t < 0; ( 5 )  
3-2 
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FIGURE 2. An illustration of the growth (----) of the double layer on the vertical wall to the 
steady state (---) double-layer system a t  t - T (equation (9)). 

and 
u = v = O  on x = O , l ,  y = O , h ;  

- 0  on y = O , h ;  
aT 
aY 
-- 

T = T,+AT on x = O , l ,  t > 0. 

A scale analysis is now applied to the set (1)-(6) to determine, firstly, the appropriate 
time and length scales for the initial flow near the end walls, secondly, the scales 
relevant to the discharge of the heated and cooled fluid into the core region of the 
cavity and, thirdly, the subsequent development of the flow in the core to steady state. 

(a )  End-wall vertical boundary-layer growth 
As either end wall has a similar influence on the interior fluid it suffices to consider 
only the heated boundary region. In this region the length scale is assumed to be 6, 
the height scale h, the vertical velocity scale v, and the time scale r .  Implicit in the 
following analysis is the assumption that 6 < h; once the relevant scales have been 
established, the constraints imposed by this assumption will be determined. 

Initially, heat is conducted into the fluid from the wall, resulting in a vertical layer 
of heated fluid of thickness 0(6,), where, from (4), 

6, K'd. (7) 

The buoyancy forces act to accelerate the fluid only over the thickness 6,; in this 
layer, the unsteady inertial term of (2) is O(v/t)  and the viscous term O(vv/6;). The 
ratio of the unsteady inertia forces to be viscous forces in the layer is therefore O(a-1) 
and the correct balance for B > 1 is between the buoyancy and viscous forces, yielding 
a vertical velocity scale 

t .  
gaAT 

V N -  
U 
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Momentum is both advected away by this velocity and diffused into the core beyond 
the thickness 6,; the advection term of (2) is O(v2/h) and the ratio of the advection 
to the diffusion of momentum over 6, is O(gaATt2/a2h). Fort < ah*/(gaAT)*, vorticity 
is therefore diffused into the core, generating a secondary viscous layer of thickness 
O(vat4). A double-layer structure appears, as illustrated in figure 2, with the inner 
thermal layer governed by a buoyancy-viscous balance, and the outer viscous layer 
by an inertia-viscous balance. 

Heat is also being convected vertically in the inner layer by the velocity (8) and the 
layer will continue to grow until the heat conducted in from the boundary balances 
that convected away. The convection term of (4) is O(vAT/h) and the conduction 
term O(KAT/S$); using (7 )  and (8) this balance yields a growth time scale for the 
thermal boundary layer, 

(9) 

at which time the velocity and length scales have become 

K Rat 
h 

v - -  

and 
h 

Rai  ’ 6, N - 

where the Rayleigh number Ra is defined in the usual way: 

ga AT h3 
Ra=-. 

V K  

The scales (10) and (1 1) are identical, with appropriate change in notation, with those 
obtained by Braun, Ostrach & Heighway (1961), and Gill (1966) for the corresponding 
steady-state problem. 

Thus the inner thermal layer grows until it has reached a thickness 8, in time 7; 
since T < crh*/(gaAT)f for (T > 1 the diffusion of momentum out of the inner layer 
maintains the outer viscous layer, which has grown to thickness 0(6,), where 

the result given by Schlichting (1960). Over the scale S,, however, the advection and 
diffusion of vorticity balance at  time 7, which therefore represents the time scale for 
steady state of the double-layer system shown in figure 2. In this double-layer system 
a wall thermal layer, governed by a balance of baroclinic generation and diffusion of 
vorticity, is contained by an outer layer governed by a balance of advection and 
diffusion of vorticity. 

The assumption that the boundary-layer length scales are very much less than the 
scale of the cavity (6, h) yields the criterion 

Ra > c2. (13) 
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FIGURE 3. An illustration of the double-layer system discharging into the cavity. The thermal 
layer discharges in a layer along the horizontal boundary whereas the viscous layer enters as a 
potential flow. 

Later in the paper it will be shown that if the criterion (1 3) is not satisfied a different 
balance is required near the heated wall (equation (25)), and a different set of scales 
result. 

( b )  Discharge into the cavity 

The presence of the upper boundary forces both thermal and viscous vertical boundary 
layers to discharge into the core region of the cavity. For times greater than r (equation 
(9)), the discharges are at constant flux; since the core is initially isothermal (at 
temperature To), the unheated fluid from the viscous layer discharges as a potential 
flow into the central part of the cavity, whereas the heated fluid from the thermal layer 
travels across the top of the cavity in an intrusion layer of thickness O(A) with velocity 
u - Q H / A ,  where QH N w a y ,  the flux of fluid through the thermal boundary layer 
(see figure 3). The motion in the core region ia driven by the boundary-layer flow and 
the fluid velocities there are therefore very much less than those in the intrusion layer; 
for the purpose of the intrusion-layer analysis the core region may be regarded as 
stationary. In addition to the assumption of constant flux, it is also assumed in the 
following that the loss of heat from an intrusion layer to the core as it travels across 
the cavity is small in comparison to the heat convected across. The constraints implicit 
in these assumptions are determined following the derivation of the relevant scales. 

Under these conditions the constant flux intrusion layer is driven by a buoyancy- 
induced horizontal pressure gradient of O(gaAT A / u t ) ,  from (2), where t is the elapsed 
time and the layer has penetrated a distance ut along the top of the cavity. The viscous 
term of (1) is O(vulA2) and the advection term O(u2 /u t ) ;  relative to the pressure 
gradient, these terms are of magnitudes 0 ( Q & h 3 t / ~  RaA5) and O(Q& h 3 / v ~  RaA3) 
respectively. For small time the viscous effects are small and the layer is described 
by an inertia-buoyancy balance; an inertial layer of thickness O(A,) forms, where, 
since Qa N K Rat, 

h - mRaB' 
The viscous term becomes of the same order at  time O(T,), where 
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and the layer is subsequently described by a viscous-buoyancy balance, becoming of 
thickness O(A,), 

Were the inertial layer (14) not affected by viscosity it would reach the far end wall 

and will therefore reach the end wall without viscous influence if T, < T,, or 

(18) 
cT16 

Ra > Alz. 

On the other hand the possibility exists that an inertial layer becomes viscous 
before the vertical boundary-layer growth is complete. This occurs if T,  < 7, or 

Ra < alO. (19) 

Hence if Ra > a10 an inertial intrusion layer will penetrate at  least part of the way 
across the cavity. The condition for the layer to be distinct (A,  < h) is Ra > r2, 
which is automatically satisfied. 

A viscous intrusion layer travelling the length of the cavity grows to thickness 
O(Avf)  and reaches the far end wall in time O(T,), where 

and 

In 1 

1% hQ 
T, - K.' 10 

is case the intrusion layer is distinct if Avf < h, or 

The assumption that QH is constant implies that the vertical boundary-layer growth 
time scale 7 is less than the relevant intrusion-layer scale. For Ra > do, 7 < T,, T, and 
the assumption is valid for all inertial layers. For Ra < (r10,7 < T, if, from (9) and (21), 

Ra > A20. (23) 

The second assumption involved is that the loss of heat from an intrusion layer to 
the core by conduction is small in comparison with the flux of heat across the cavity. 
Since the flux across is O(Q, A T )  and loss in time t across the interface is O(KutAT/A), 
the assumption is valid only if (since u N Q , / A ) t  < A2/K.  If the layer is inertial, 
A N A, and t < T,. From (15), T,  - A%/u and for v > 1 the condition is satisfied. 
Hence the assumption is valid for all inertial layers. On the other hand, if the intrusion 
layer is viscous, A - Avf and the assumption is valid only if T, < h : f / K ,  or, from (20) 
and (21), 
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If (24) is not satisfied, the scales and inequalities are no longer valid. The interpre- 
tation in this case is that, although a viscous intrusion layer may form, it quickly 
losses its thermal identity through vertical conduction into the core. 

(c) Core motion and the approach to steady state 

The subsequent motion in the core region is extremely complex, involving discharges 
from both thermal and viscous vertical boundary layers, and a detailed scaling 
analysis of the transient behaviour is not possible, as the scales do not separate. How- 
ever, a qualitative picture of the events in the core may be constructed, and some 
useful scales and inequalities determined. 

Consider firstly the situation for Ra c a2, in which case the vertical viscous boundary 
layer is O(h).  Since the diffusion of vorticity occurs over a length scale O(h) ,  the shear 
developed across the vertical extent of the cavity becomes significant. As a result, 
the negative horizontal pressure gradient in the upper half of the cavity which drives 
the heated fluid across (and the corresponding positive gradient in the lower half) 
generates a vertical pressure gradient which may influence the balance in the thermal 
boundary layer. A balance between the pressure forces driving the horizontal flow and 
the viscous forces shows that the horizontal pressure gradient is given by 

where u is the horizontal velocity u N v&,/h. Thus the vertical gradient is O(p /h ) ,  
and since the viscous term is O(vv/S$) in the layer, the pressure term becomes impor- 
tant when (p/poh)/(vw/&$) - 1 or 

($)3 - A .  

From (1 I) ,  equation ( 2 6 )  shows that, if Ra < A-4, the viscous-buoyancy balance in 
the thermal layer is no longer valid, with the correct balance being between buoyancy 
and the pressure term, yielding the velocity scale 

K) Ra A 
tt v-- (27) 

With this scale, the conduction-convection balance in the thermal layer occurs at 

12 

K Ra2’ 
7N- 

by which time the layer has reached thickness 

1 
Ra‘ 

8, - - (29) 

Thus if Ra < A-*, the vertical thermal layer continues to advance unidirectionally 
(since aT/ay = 0 on the upper and lower boundaries) until the thickness (29) is reached; 
for Ra < 1, the layer encompasses the entire cavity before convection becomes 
important. On the other hand, if Ra > A-4, (11)  shows that 6, < 1 and the thermal 
layer is distinct. 
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However, this distinct vertical thermal layer resulting in either case for Ra > 1 
may be destroyed in a number of ways. First, if 1 < Ra < A-Q, the heated horizontal 
intrusion layers discharged from the distinct vertical thermal layer are of thickness 
O(h) ,  and any vertical temperature structure is annihilated. This input of heat to the 
core over the height of the cavity erodes the steep temperature gradient a t  the edge 
of the thermal layer, which effectively advances across the cavity. Secondly, if 
A-4 < Ra < u2, the diffusion of vorticity is again over a length scale h, spreading 
the horizontal intrusion layer to O(h)  with the same result as in the previous case. 
Thirdly, if Ra < A-12, potentially distinct heat intrusion layers move into the core 
but quickly lose their heat content by vertical conduction, again effectively thickening 
the vertical thermal layer. 

As the Rayleigh number increases beyond A-4, A-12, and u2, distinct vertical 
boundary layers form, ejecting heated fluid in distinct horizontal layers which convect 
heat across the cavity without significant loss by conduction to the core. As subsequent 
layers traverse the core, a stable vertical temperature gradient is set up. The core fills 
with heated fluid by horizontal layering, filling occurring in the time taken for all of 
the fluid to pass through the thermal boundary layer, 

The nature of the layering changes with increasing Ra, with viscous layers occurring 
for Ra < ulO, inertial layers becoming viscous for u10 < Ra < ~ l ~ A - 1 2 ,  and purely 
inertial layers for Ra > d6A--12. 

Thus for a given set of non-dimensional parameters, the flow may be broadly 
classified into one of three regimes. The first regime, Ra < 1, is predominantly con- 
ductive, with vertical isotherms moving out from the boundaries as the thermal layer 
advances across the cavity, approaching a linear horizontal temperature gradient a t  
steady state. Although the horizontal gradient drives a weak circulation, convection 
is negligible in comparison to horizontal conduction of heat and the fluid motion plays 
no part in the heat transfer process. Steady state is achieved in the conduction time 
scale T, N P/K.  

The second flow regime occurs for Rayleigh numbers greater than A-Q, A-12, and 
u2, or, since A-% ,< A-l2 for A < 1, for Ra > Ra,, where the critical Rayleigh number 

(31) 
Rae is defined by 

In  this case, horizontal intrusion layers convect heat across the cavity, reinforcing 
the conducting thermal layers on the end walls and generating predominantly hori- 
zontal isotherms in the core. The core fills by horizontal layering, with a first estimate 
of the steady-state time being given by T,. 

The third region, 1 < Ra < Ra,, is one of transition between these conductive and 
convective extremes, with convective effects becoming evident as Ra approaches Rae. 
The steady-state time will lie between T, and Tf. 

One further mechanism may be of importance in the  convective regime. Since the 
heated intrusion layers discharged from the vertical thermal layer are of thickness 
small in comparison with h, the thermal layer is entraining over a length greater than 
the thickness of the discharge. By symmetry, the horizontal intrusion layer incoming 
to the vertical thermal layer is of the same thickness as the discharging layer. Thus 

Rae - max (u2, A-12). 
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FIGURE 4. The variation with Rn of the various time scales in their regions of validity for the case 
u = 7 ,  A = 1 .  The boundaries between flow regimes I-VI are indicated by the broken vertical lines 
and computation runs 1-5 by the solid vertical lines, terminating a t  the time at which steady 
state was numerically achieved. 

the entrainment length acts as a distributed sink to the incoming intrusion layer, 
which spreads against buoyancy to meet the sink. Since these horizontal layers have 
not lost heat to the core, the effect of this spreading is a tilting of the isotherms beyond 
the horizontal and the consequent generation of internal waves of frequency O(w) ,  

N 
(1+A2)4’ 

0.)- 

where the Brunt-VaisaIii frequency is defined by N N (VK Ru)*/h2. 
This internal wave motion is damped by a combination of viscosity and the draining 

of momentum into the vertical boundary layers; an upper estimate for the decay time 
is given by Td N h2/u. Since steady state cannot be achieved before all wave motion 
has decayed or before the filling time T,, the convective regime steady-state time is 
given by the maximum of Td and Tf .  For Ra > @A-4, T, < Td, and the decaying wave 
motion may extend steady state beyond T,. In this case, the total heat transfer across 
the cavity rises to a peak as the core isotherms tilt beyond the horizontal and sub- 
sequently approaches a steady value in a decaying oscillation as the internal wave 
motion dies away. On the other hand, if Ra < Td < T,, and all wave motion 
has decayed before the cavity is filled. In this case, the approach to steady state is 
regular as the cavity fills, implying that all internal wave motion is quickly damped 
and will not be evident. 

(d ) Overall evolution to steady state 

The results of the previous sections may be summarized to provide an overall picture 
of the evolution of the flow from initiation to steady state for a particular set of 
parameter values. The flow may be classified as convective, conductive, or transi- 
tional, depending on the relative values of Ra,  1, and Ra,. Within the convective 
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Regime 

I Ra < 1 

I1 1 < R a < u a  

I11 

IV 

V 

u2 < Ra < u ~ A - ~  

u4A-$ < Ra < u10 

V I  u16A-12 < Ra 

Time scale Para- 
( f * )  meter Equation Comments 

A-2 Tc 

A-2 + A-1Ra-* T, + T, (30) 

A-IRa-4 

U-1 

A-lRa-i 

U-1 

Steady state by the thermal boun- 
dary layer encompassing the en- 
tire cavity. Heat transfer by 
conduction 

Steady state by a combination of 
the thermal boundary advancing 
across the cavity and convective 
effects being dissipated by verti- 
cal diffusion. Both convection 
and conduction participate in 
the heat transfer 

Thermal and viscous boundary 
layers steady and distinct 

Horizontal viscous intrusion layer 
reaches far wall 

Steady state by horizontal layer- 
ing. No internal wave motion. 
convection becoming important 
in the heat transfer 

Thermal and viscous boundary 
layers steady and distinct 

Horizontal viscous intrusion layer 
reaches far wall. Internal wave 
motion begins 

Cavity fitted by horizontal layer- 
ing. Internalwavemotion present 

Steady state by decay of internal 
wave motion. Convection-domi- 
nated heat transfer 

Thermal and viscous boundary 
layers steady and distinct 

Horizontal inertial intrusion layer 
becomes viscous 

Viscous intrusion layer reaches 
far wall. Internal wave motion 
begins 

Cavity filled by horizontal layer- 
ing. Internal wave motion pre- 
sent 

Steady state by decay of internal 
wave motion. Convection-domi- 
nated heat transfer 

Thermal and viscous boundary 
layers steady and distinct 

Horizontal inertial intrusion layer 
reaches far wall. Internal wave 
motion begins 

Cavity filled by horizontal layer- 
ing. Internal wave motion pre- 
sent 

Steady state by decay of internal 
wave motion. Convection-domi- 
nated heat transfer 

TABLE 1 
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regime, the parameter a2A-4 determines the nature of the approach to steady state. 
Further, the parameters A-4, ~ 1 0 ,  and u ~ ~ A - ~ Z  define a number of sub-regimes of the 
broader classifications. For the values a > 1, A < 1 considered here, six possible 
orderings of these critical Ra values are possible, depending on the relative values of 
u and A ,  each ordering yielding a different set of transient flow regimes. An examina- 
tion of all these possibilities is beyond the scope of this paper, and only the case which 
arises for u > A-6, which yields the ordering 

I < A 3  < A-12 < a 2  < a4A-4 < a10 < al6A-12 

L discussed below. This case is the only one for which.Ra, = u2, and, since the para- 
meters A 3  and A-12 are not relevant, no generality is lost by taking the special case 
A = 1. The remaining possible orderings can only arise if A < 1,  cr < k6, and will be 
treated in a subsequent paper. 

The evolution to steady state in each of the six regimes defined by the parameter 
values is summarized by figure 4, which shows for A = 1 and u = 7 the variation with 
Ra of the relevant time scales (non-dimensionalized by h 2 ~ - l )  for their regimes of 
validity, and by table 1,  which briefly describes the hierarchy of time scales which 
divide each regime into a number of transient sub-regimes. 

3. Numerical procedures 
In order to test the validity of the scale analysis and interpretation of the previous 

sections, a number of numerical solutions have been obtained for the case A = 1 and 
parameter values such that the principal flow regimes are traversed. The finite-differ- 
ence method used for the numerical solution of the set (I)-( 6) is based on the scheme 
proposed by Chorin (1968), which uses the raw vaxiables of velocity and pressure 
rather than the derived stream-function-vorticity formulation. 

A number of modifications to the original scheme were found to be desirable, the 
most important of which involved alternations to the methods of obtaining the 
auxiliary velocity field and the iterative solution for new time-step pressures and 
velocities. Briefly, Chorin’s scheme involves the solution (explicit or implicit) of the 
momentum equations, with the pressure term deleted, for an auxiliary velocity field, 
which, in conjunction with the full momentum and continuity equations, is used to 
construct an iterative algorithm for the new time-step velocities and mid time-step 
pressures. The first modification incorporated an outer iteration loop, where the last 
known pressure is used in the generation of the auxiliary field, which is now an estimate 
for the velocities, followed by the solution for the pressure increment and a new 
velocity increment which are inserted back into the momentum equations, the process 
continuing until convergence is achieved. Only a small number of outer iterations is 
generally required, depending of course on the convergence criterion, and the method 
proved more accurate and not significantly slower than the original. 

The second modification was concerned with the (now) inner iteration; the solution 
for the new pressure increments. In the original scheme, the algorithm constructed 
was essentially the iterative solution of a Poisson equation for pressure, defined on 
two intertwined meshes coupled on the boundary by continuity. A t  high Rayleigh 
numbers, oscillations between the meshes were inclined to develop unless higher-order 
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differencing on the boundary was used. It proved simpler to redefine the entire 
problem on a staggered (MAC) mesh, with pressures defined in the centres of the 
mesh rectangles and velocities on the sides in the usual way. In this way, the Poisson 
equation is defined on a single mesh, with the pressure boundary conditions being 
directly obtained from the momentum equations in a manner consistent with 
continuity. 

Before differencing, the set (1)-(6) was non-dimensionalized according to the 
scheme 

(33) I X = x/h,  Y = p/h,  t* = tK/h2, 

U = uh/v,  V = vh/v, T* = (T-To)/AT,  
P = ph2/pov2, 

and the transport equations written in conservative form. A check on the progress 
of the integration is made by the evaluation of a measure of the heat transfer, the 
Nusselt number, at  the heated end and at the centre-line of the cavity. The Nusselt 
number N u  is defined as 

where a t  the heated end X = 0, and a t  the centre-line X = +A-1. When these two 
values of N u ,  which measure the total heat transfer in the horizontal direction at  each 
station, have reached st.3ady values and are equal, within a prescribed error, steady 
state is assumed to have been reached. This is confirmed by the iteration count; at  
steady state each time step is completed in a minimum number of inner and outer 
iterations, the actual number depending on the convergence criteria in each case. 

A check on the conservation properties of the algorithm is also made periodically. 
Because of the symmetry of the problem, which is not explicitly built into the algorithm, 
the Nusselt numbers at  each end must be equal a t  any instant; the total non-dimen- 
sional heat content of the cavity is always zero. Hence conservation of energy is checked 
by a periodic integration of the temperature field over the entire cavity, which should 
be zero within a prescribed error. 

The remaining points of interest in the numerical context are those of stability and 
accuracy. These questions are complex for this type of problem and a vast literature 
exists (see Roache 1972); in the present context it is sufficient to note that, for accurate 
spatial and temporal representation of the solution (and hence stability as well), 
limits on time-step and mesh size are enforced by the time and length scales of the 
problem, in addition to any other stability criterion in use. For example, for convection- 
dominated flows, it is essential that a t  least two mesh points are contained in the 
boundary layer at each vertical level. Hence for a uniform grid of n, points in the X 
direction, with spacing h,, 

h, c $av, or An, > 2 Rat ua. (35) 

For Prandtl number u N O( I ) ,  (35) yields, for Ra = lo6 for example, An, > 63. Hence, 
with A < 1, maintaining a reasonable mesh aspect ratio may mean an excessive num- 
ber of mesh points and consequent storage problems, together with an increase in 
computation time. Similarly, the time-step size is limited by the time scale of the 
internal wave motions, obtained from (32). 
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The use of such devices as non-uniform grids and specialist differencing methods 
were introduced and alleviated the problem somewhat ; however these schemes fre- 
quently introduced additional complications and a significant extension of the range 
of Rayleigh numbers amenable to numerical solution by finite-difference methods 
is unlikely. 

In view of this, solutions in the present study have been obtained for a limited range 
of Rayleigh and Prandtl numbers only. Even within this range, the larger-Rayleigh- 
number problems proved costly in terms of storage and computation time and the 
additional expense of attempting to extend the range was not warranted. 

4. Results and discussion 
The computations were directed at  traversing the six transient flow regimes defined 

for the case A = 1, u > A-6. All computations were carried out on square, uniformly 
spaced grids, the time step and grid spacing being determined initially from (32) and 
(35). These were occasionally changed as the result of numerical experiment. 

2.1 x lo1, lo3, 1.4 x lo4 and 1.4 x lo5, traversing regimes I to IV. The results of these 
computations are shown in figures 5-9; in each figure the variation with t* of the Nusselt 
numbers at  the hot end (Nu,) and centre line (Nu,) of the cavity is shown, indicating 
the progression of the flow to steady state. The temperature and flow fields at  steady 
state are also shown in each case and, in some cases, the fields a t  some transient stage 
are also given, together with the progression of the lower half of the T* = 0 isotherm 
with t*. In  addition, each run in this series is depicted as a vertical line on figure 4, 
terminating at  the time at  which the computation was halted. The results of these 
computations are discussed below. 

Run 1: u = 7 ,  Ra = lo-'. In this case a completely conduction-dominated flow 
(regime I) is indicated. The Nusselt numbers a t  the end and centre line of the cavity 
(figure 5a)  monotonically approach the pure conduction value unity from above and 
below as the thermal boundary layer progresses across the cavity and the temperature 
gradients and the end and centre decrease and increase to a linear gradient across the 
cavity (figure 5 c ) .  This gradient drives an extremely weak circulation (figure 5b) with 
no effect on the heat transfer. The approach to steady state consists merely of vertical 
isotherms moving out from the end walls gradually approaching the steady result. 
Because of the extremely slow convergence to steady state, the computation was 
halted at  t* = 0.4 and restarted with a linear horizontal temperature gradient; the 
algorithm quickly converged to the flow field shown in figure 5 (b) without a noticeable 
alteration to the temperature structure. 

Run 2: u = 7, Ra = 2-1 x 101. Again a conduction-dominated flow with some con- 
vective effects is expected. The Nusselt numbers (figure 6a)  and the steady-state flow 
and temperature fields (figure 6 b, c) display the same characteristics as the previous 
case, although the velocities are higher and a very slight convective tilt is present in 
the isotherms. Steady state is indicated numerically at t* = 0.31, compared with the 
time predicted by (30), TT N 0-47 (figure 4).  

Run 3: CT = 7, Ra = lo3. In this case Ra has passed into regime I11 and convective 
effects are expected to be present. However, since Ra < C T ~ A - ~ ,  internal wave motion 
will be damped before the cavity filling time and the approach to steady state will 

The first series of computations was for CT = 7 and Ra taking the values 
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FIGURE 5. The numerical results for run 1, d = 7, Ra = lo-'. (a)  The dependence of Nu, and NUE 
on t * ;  (b )  the steady-state streamlines; and (c) the steady-state isotherms. The solid triangle 011 
(a )  indicates the time a t  which the streamlines and isotherms are taken. The numerical values on 
(b)  and (c) are values cf ($/v) x 106 and T* respectively. 
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FIGURE 6. The numerical results for run 2, cr = 7 ,  Ra = 21. (a )  The dependence of Nu, and Nuw 
on t*; (b )  the steady-state streamlines; and (c) the steady-state isotherms. The solid triangle on 
(a )  indicates the time a t  which the streamlines and isotherms are taken. The numerical values on 
(b )  and (c) are values of ($/v) x lo2 and T* respectively. 
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FIUURE 7. The numerical results for run 3, u = 7, Ru = lo3. (a) The dependence of Nu, and NUB 
on t*; (b )  the steady-state streamlines; and (c) the steady-state isotherms. The solid triangle OR 

(a) indicates the time at  which the streamlines and isotherms are taken. The numerical values on 
(b)  and (c) are values of +/v and T* respectively. 

be monotonic. This is confirmed by figure 7 (a) ,  showing the Nusselt numbers approach- 
ing the steady value 1.25 from above and below, the increased steady-state value 
indicating the increased importance of convection. At steady state, achieved numeric- 
ally at t* = 0.09, compared with Tj+ - 0.18, the flow and temperature fields (figure 
7 b ,  c )  show a stronger circulation, some convective tilt to the isotherms in the core 
region, and the presence of a conduction region near the end walls. At all times previous 
to steady state the temperature field shows only a gradually increasing convective 
effect and again no transient result is shown. 

Run 4: (r = 7, Ra = 1.4 x 104. The convective regime I V  is relevant in this case and, 
in addition to increasing convection, evidence of internal wave motion is expected. 
Figure 8 (a)  shows Nu, rising to a peak at  t* = 0.026 and subsequently dropping away 
to the steady value 3.31 at t* = 0.08, indicating the passage of one wave heavily 
damped. At  t* = 0-014, before the peak in heat transfer, the flow and temperature 
fields (figure 8b,c)  show a rapid increase in velocities, the presence of a boundary 
layer, the divergence of the intrusion layers as they enter the core (indicated by the 
tilt in the streamline pattern), and the convective effect on the temperature field. A t  
steady state (figure 8d,  e ) ,  the internal wave activity has decayed, the velocities 
decreased from their maximum values, and the streamlines are nearly parallel in the 
core. The isotherms are approximately horizontal in the core, indicating the dominance 
of convection, turning sharply into well-defined boundary regions conducting heat in 
and out of the cavity. The T* = 0 isotherm (figure 8 f )  becomes tilted beyond the 
horizontal near the peak in heat transfer and slowly decays to its steady configuration 
as the wave motion decays. 
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FIGURE 8. The numerical results for run 4, cr = 7 ,  Ra = 1.4 x lo4. (a)  The dependence of Nu, and 
NUE on t * ;  (b .  c) the streamlines andisotherms at t* = 0.014; ( d ,  e )  the streamlines and isotherms 
at steady state; and (f) the variation of the lower half of the T* = 10 isotherm with t*.  The solid 
triangles on (a)  indicate the times at which the transient and steady-state results are taken. 
The numerical values on the streamline and isotherm plots are values of $/v and T* respectively. 



82 

N u  

J .  Patterson and J .  Imberger 

t* 
I 1 I I 

0 0.02 0.04 ‘0.06 0.08 0.1 
(a) 

2.0 1.0 

0.6 

0.2 

0.1 

. . . I . ,  

0 0.1 0.2 0.3 0.4 0.5 0 0.1 0.2 0.3 0.4 0.5 

v, 
FIGURE 9. The numerical results for run 5 ,  u = 7, Ra = 1.4 x lo6. (a)  The dependence of Nu, and 
NUB on t * ;  ( b ,  c )  the streamlines andisotherms at t* = 0.009; (d,  e )  the streamlines and isotherms 
a t  steady state; and (f) the variation of the lower half of the T* = 0 isotherms with t* .  The solid 
triangles on (a )  indicate the times at which the transient and steady-state results are taken. The 
numerical values on the streamline and isotherm plots are values of $/v and T* respectively. 
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FIGURE 10. The numerical results for run 6, (r = 2, Ra = 1.4 x lo4. (a) The dependence of Nu, and 
NUE on t*; and (b ,  c) the streamlines and isotherms at t* = 0.30, before steady state. The solid 
triangle on (a) indicates the time at which the transient results are taken. The numerical values 
on (b)  and (c )  are values of f i / v  and T* respectively. 

Run 5: CT = 7, R a  = 1.4 x 105. In  this case the flow description remains in regime IV, 
although convective effects and the internal wave activity are expected to be stronger 
than in the previous case. The centre-line Nusselt number (figure 9a)  shows evidence 
of strong internal wave motion surviving for several periods of 0(0.01), compared 
with the value 2n/o*, from (32), of 0(0.009), decaying away to a steady-state N u  = 7.24 
a t  t* = 0.056, between T,* - 0.052 and TZ - 0.143. The transient flow and tempera- 
ture fields (figure 9 b ,  c )  taken at  t* = 0.009, near the first peak in heat transfer and 
hence at  near-peak core velocities, show a similar tilt to the streamline pattern as in 
the previous case, well-defined boundary regions, and a strongly tilted T* = 0 isotherm 
in the core. The tilted streamlines are evidence of the viscous boundary layer entering 
the core, while the T* = 0.33 and T* = -0.33 isotherms clearly show a heated in- 
trusion layer entering the core. In this case the intrusion layer is viscous and, a t  
t* = 0.009, has thickness 0(0.12), of the same order that is shown on figure 9(c) ,  
O(0.14). A t  steady state (figure 9d,  e )  the flow has passed through several oscillations 
and has slowed considerably, with strong boundary layers present on the end walls. 
The isotherms in the core region are essentially horizonta.1, turning sharply into 
conducting boundary layers. Figure 9 ( f )  shows the T* = 0 isotherm developing a 
strong tilt beyond the horizontal in the core region, and subsequently decaying away 
to a horizontal configuration at  steady state, with a horizontal gradient at  the edge 
of the boundary layer driving the flow across the cavity. 

To access regimes V and V I  with CT = 7 requires Rayleigh numbers of the order of 
109 and 1013 respectively. To avoid the numerical difficulties associated with parameter 
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FIGURE 11. The numerical results for run 7, g = 2, Ra = 1.4 x 106. (a) The dependence of Nu, and 
NUE on t* ;  and (b ,  c) the streamlines and isotherms at  t* = 0.01, before steady state. The solid 
triangle on (a )  indicates the time at which the transient results are taken. The numerical values 
on (b )  and (c) are values $/v and T* respectively. 

values of this magnitude, flows in these regimes were generated by a reduction 
in Prandtl number. Hence a second series of computations were undertaken with 
(T = 2, and Ra taking the values 1.4 x lo4 and 1.4 x lo5, accessing regimes V and VI 
respectively. The results of these runs are shown in figures 10 and 11. 

Run 6: u = 2, Ra = 1.4 x 104. Although this computation lies in regime V, the re- 
duction in both (T and Ra precludes direct comparison with run 5 in regime IV. In 
particular, both the period of the internal waves and the filling-time estimate Tf 
increase over run 5 ,  as does the decay time Td. Figure 10 (a) shows the Nusselt number 
variation with t*, indicating the presence of internal waves of period 0(0.042), in 
comparison to a period O(0.053) suggested by (32). The transient streamlines and 
isotherms taken a t  t* = 0.03, near the first peak in heat transfer, again show the 
features typical of the convective regime; a tilted streamline pattern and T* = 0 
isotherm in the core, evidence of an entering layer of heated fluid, and a conducting 
boundary region. At steady state, achieved numerically a t  t* = 0.2, the Nusselt 
number has approached 3-31) identical to the result for run 4 (with the same Ravalue), 
and the steady-state flow and temperature fields are also indistinguishable from those 
of run 4 and are not shown. A discussion of the dependence of both the steady and 
transient behaviour on Prandtl number is given below. 

Run 7: (T = 2, Ra = 1.4 x lo5. In  this case the purely inertial regime VI is relevant. 
The centre-line Nusselt number (figure 11 a) indicate the presence of strong internal 

, 

1 
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waves of period 0(0.019), surviving for many periods before decay to the steady 
N u  = 7.24, the same as the result for run 5 .  The period predicted from (32) for this 
computation is 0.017, in good agreement with the observed value. At t* = 0.01, near 
the first peak, the convective effects are again clearly present (figure I l b ,  c) .  In this 
case the T* = 0.33 and T* = - 0.33 isotherms show an entering layer of heated fluid 
which has begun to diverge to meet the distributed sink on the cold and hot walls 
respectively. At steady state, the flow and temperature fields are indistinguishable 
from those of run 5 with the same R a  value and are again not shown. 

The results of runs 6 and 7 also raise the question of the dependence of the flow 
and heat transfer properties on the value of the Prandtl number. It has already been 
indicated that the steady results from these computations were identical to those of 
run8 4 and 5 respectively, which have corresponding Ra values, demonstrating that 
indeed the steady result is independent of a. This is to be expected since, in terms of 
heat transfer, as R a  -+ 03 for fixed A ,  the steady Nusselt number is given by the 
temperature gradient across the thermal boundary layer, 

L AT 
2AT 8,. 
Raf 
2A ' 

N U N - -  

N- 

independent of cr. On the other hand small values of Ra lead toa conduction-dominated 
process, with N u  N O(l), again independent of cr. 

A comparison of figure 8 ( a )  with lO(a) and figure 9(a)  with 11 (a)  however clearly 
shows that the approach to steady state is markedly different. In both cases, the 
reduction in cr leads to stronger internal wave action surviving for more periods. 
Again this is to be expected, since although the steady-state result may be a inde- 
pendent, the divisions in transient flow regimes which determine the mechanism by 
which steady state is achieved are dependent on a. 

5. Conclusions 
The completed results indicate that, for fixed A and a and increasing Ra, the des- 

cription of the flow changes from conduction dominated to convection dominated as 
R a  increases beyond the values of unity and Ra,. The conduction-dominated flows 
Ra < 1 are in the sense of Batchelor (1954) (small horizontal temperature gradients), 
and exhibit the slow spin-up illustrated in figures 5 and 6, extending into the transition 
regime 1 < Ra < Ra,, where, for the case treated in detail numerically, A = 1, a > 1, 
Ra, N az. On the other hand, flows in the sense of Gill (1966) arise for R a  > Rac, with 
the approach to steady state being either regular through horizontal layering in the 
core or oscillatory through the decay ofinternal wave motion, depending on the relative 
values of R a  and cr4A-4, illustrated in figures 7-1 1. The conductive flows described 
by Cormack, Leal & Imberger (1974) can only be achieved for A < 1 , l  < a < A-6, and 
their transient properties will be discussed in a subsequent paper. 

Although the steady state of these flows is independent of the value of the Prandtl 
number, it is evident that the transient flows may depend strongly on cr. Thus different 
transient flows may belong to different regimes, but ultimately converge to identical 
steady states. 
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Finally, the potentially oscillatory nature of the convective flows is of considerable 
importance to environmental flows. In particular, at  times of minimum heat transfer, 
the streamline patterns indicate a tendency towards the formation of closed cells at  
either end of the cavity. Should the forcing time scale be such that the flow does not 
progress beyond this time or even reinforces the effect, undesirable heat or mass may 
be dispersed inefficiently, or even returned to its injection point. 
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